Strong Gaussian approximation of the mixture Rasch model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

Image Segmentation Based on Bethe Approximation for Gaussian Mixture Model

We propose an image segmentation algorithm under an expectation-maximum scheme using a Bethe approximation. In the stochastic image processing, the image data is usually modeled in terms of Markov random fields, which can be characterized by a Gibbs distribution. The Bethe approximation, which takes account of nearest-neighbor correlations, provides us with a better approximation to the Gibbs f...

متن کامل

Bayesian speaker recognition using Gaussian mixture model and laplace approximation

This paper presents a Bayesian approach for Gaussian mixture model (GMM)-based speaker identification. Some approaches evaluate the speaker score of a test speech utterance using a single data likelihood over the GMM learned by point estimation methods according to the maximum likelihood or maximum a posteriori criteria. In contrast, the Bayesian approach evaluates the score by using the expect...

متن کامل

The Infinite Gaussian Mixture Model

In a Bayesian mixture model it is not necessary a priori to limit the number of components to be finite. In this paper an infinite Gaussian mixture model is presented which neatly sidesteps the difficult problem of finding the “right” number of mixture components. Inference in the model is done using an efficient parameter-free Markov Chain that relies entirely on Gibbs sampling.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2019

ISSN: 1350-7265

DOI: 10.3150/18-bej1022